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Abstract

A low-energy neutron transport algorithm for use in space radi-
ation protection is developed. The algorithm is based upon a multi-
group analysis of the straight-ahead Boltzmann equation by using a

mean value theorem for integrals. This analysis is accomplished by
solving a realistic but simpli�ed neutron transport test problem. The
test problem is analyzed by using numerical and analytical proce-

dures to obtain an accurate solution within speci�ed error bounds.
Results from the test problem are then used for determining mean
values associated with rescattering terms that are associated with a
multigroup solution of the straight-ahead Boltzmann equation. The

algorithm is then coupled to the Langley HZETRN code through the
evaporation source term. Evaluation of the neutron 
uence gener-
ated by the solar particle event of February 23, 1956, for a water and

an aluminum-water shield-target con�guration is then compared with
LAHET and MCNPX Monte Carlo code calculations for the same
shield-target con�guration. The algorithm developed showed a great
improvement in results over the unmodi�ed HZETRN solution. In

addition, a two-directional solution of the evaporation source showed
even further improvement of the 
uence near the front of the water
target where di�usion from the front surface is important.

Introduction

The purpose of this paper is to present an improved algorithm for the analysis of the transport
of low-energy neutrons arising in space radiation protection studies. The design and operational
processes in space radiation shielding and protection require highly e�cient computational
procedures to adequately characterize time-dependent environments, time-dependent geometric
factors, and to address shield evaluation issues in a multidisciplinary integrated engineering
design environment. One example is the recent study of the biological response in exposures
to space solar particle events (SPE's) in which the changing quality of the radiation �elds at
speci�c tissue sites is followed over 50 hours of satell ite data to evaluate time-dependent factors
in biological response of the hematopoietic system (ref. 1). Similarly, the study of cellular
repair dependent e�ects on the neoplastic cell transformation of a C3H10T 1

2 population in low
Earth orbit, where trapped radiations andgalactic cosmic rays vary continuously in intensity and
spectral content about the orbital path (ref. 2), requires computationally e�cient codes to match
time-dependent boundary conditions around the orbital path. But even in a steady environment
which is homogeneous and isotropic, the radiation �elds within a spacecraft have large spatial
gradients and highly anisotropic factors so that the mapping of the radiation �elds within the
astronaut's tissues depends on the astronaut timeline of location and orientation within the
spacecraft interior where large di�erences in exposure patterns that depend on the activity of
the astronaut have been found (ref. 3). Obvious cases exist where rapid evaluation of exposure
�elds of speci�c tissues are required to describe the e�ects of variations in the time-dependent
exterior environment or changing geometric arrangement. A recent study of the time-dependent
response factors for 50 hours of exposure to the SPE of August 4, 1972, required 18 CPU hours
on a VAX 4000/500 computer by using the nucleon{light ion section of the deterministic high
charge and energy transport code HZETRN. The related calculation with a standard Monte
Carlo code such as HETC or LAHET, which only handles neutrons, protons, pions, and alphas,
would have required approximately 2 years of computer time to complete the study. The design
environment also requires rapid evaluation of the radiation �elds to adequately determine e�ects
of multiparameter design changes on system performance (refs. 4 and 5). These e�ects are the



driving factors in the development and use of deterministic codes and in particular the HZETRN
code system that handles all naturally occurring atomic ions and neutrons.

The basic philosophy for the development of the deterministic HZETRN code began with the
study by Alsmiller et al. (ref. 6) with an early version of HETC, wherein they demonstrated
that the straight-ahead approximation for broad beam exposures was adequate for evaluation of
exposure quantities. Wilson and Khandelwal (ref. 7) examined the e�ects of beam divergence
on the estimation of exposure in arbitrary convex geometries and demonstrated that the errors
in the straight-ahead approximation are proportional to the square of the ratio of the beam
divergence to the radius of curvature, which is small in typical space applications. From a
shielding perspective, the straight-ahead approximation overestimates the transmitted 
ux, and
the error is found to be small in space radiation exposure quantities. Our �rst implementation
of a numerical procedure was performed by Wilson and Lamkin (ref. 8) as a numerical iterative
procedure of the charged components perturbation series expansion of the Boltzmann transport
equation and showed good agreement with Monte Carlo calculations for modest penetrations to
where neutrons play an important role. The neutron component was added by Lamkin (ref. 9);
this closed the gap between the deterministic code and the Monte Carlo code. The resulting
code was fast compared with the Monte Carlo codes but still lacked e�ciency in generating and
handling large data arrays, which would be solved in the next generation of codes.

The transport of high-energy ions is well adapted to the straight-ahead approximation. In
fact, a more common assumption that secondary ion fragments are produced with the same
velocity as the primary initial ion (ref. 10) is inferior to the straight-ahead approximation
contrary to intuition (ref. 11). The Boltzmann transport equation for the particle �elds �j(x;E)
is given in the straight-ahead and continuous slowing down approximations as

�
@

@x
�

@

@E
Sj(E)+ �j(E)

�
�j(x;E) =

Z
1

E
�jk(E;E

0) �k(x;E
0) dE 0 (1)

where x is the depth of penetration, E is the particle kinetic energy, Sj(E) is the particle
stopping power, �j (E) is the macroscopic interaction cross section, and �jk(E;E 0) is the

macroscopic cross section for particle k of energy E 0 produced as a result of the interaction
with a particle j of energy E: At Langley Research Center for all the code development, it
has been customary to invert the di�erential operator and implement it exactly as a marching
procedure (ref. 12), and the remaining issue has been in approximating the integral term on the
right-hand side of equation (1). The implementation for the heavy fragments was facilitated by
the assumption that the fragment velocity is the same as the primary ion which is inadequate
for the description of the coupled nucleonic and light ion components. A compatible nucleonic
transport procedure was developed by Wilson et al. (ref. 13) and showed good agreement with
exposure quantities evaluated by Monte Carlo transport procedures (ref. 14). The transport of
the nucleonic component was developed by assuming that the midpoint energy within the step
was the appropriate energy to evaluate the integral term. Thus, the residual range of the proton
will reduce by h=2 before the interaction and the secondary proton residual range will reduce
by h=2 before arriving at the next marching step. Neutrons show no loss in residual range as
their stopping power is zero. This choice was shown to minimize the second-order corrections to
the marching procedure (ref. 15). Although reasonable agreement on exposure quantities from
Monte Carlo calculations was obtained, the resultant neutron 
ux at the lowest energies was
substantially below the Monte Carlo result in the range of 0:01 to several MeV and required
improvement (ref. 16). Analysis concluded that the problem was in the rescattering terms in
which the number of elastic scattered neutrons was underestimated numerically, which must be
addressed as suggested by Shinn et al. (ref. 16).
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The issue of evaluation of the integral term of the Boltzmann equation for the elastic scattering
is the next issue to be resolved in the development of the HZETRN deterministic code. Once
the elastic scattering events are adequately represented and the associated improvements in the
neutron 
ux are made, one still needs to address the issue of the adequacy of the nuclear database
for nucleonic transport in the HZETRN code system (ref. 13).

Formulation of Transport Equations

De�ne the di�erential operator B as

B[�] =

�
@

@x
�

@

@E
Sj(E) + �j(E)

�
�(x;E)

=
@�(x;E)

@x
�

@

@E

�
Sj(E) �(x;E)

�
+ �j(E) �(x;E) (2)

and consider the following one-dimensional Boltzmann equation from reference 17

B [�j ] =
X
k

Z 1

0
�jk(E;E

0) �k(x;E
0) dE 0 (3)

where �j is the di�erential 
ux spectrum for the type j particles, Sj(E) is the stopping power
of the type j particles, and �j(E) is the total macroscopic cross section. The term �jk(E;E

0),
a macroscopic di�erential energy cross section for redistribution of particle type and energy, is
written as

�jk(E;E
0) =

X
�

�� ��(E
0) fjk;�(E;E

0)

where fjk;�(E;E
0) is the spectral redistribution, �� is a microscopic cross section, and �� is the

number density of � type atoms per unit mass. The spectral terms are expressed as

fjk;� = feljk;�+ f ejk;� + fdjk;�

where fel
jk;�

represents the elastic redistribution in energy, fe
jk;�

represents evaporation terms,

and fdjk;� represents direct knockout terms. The elastic term is generally limited to a small

energy range near that of the primary particle. The evaporation process dominates over the low
energies (E < 25MeV) and the direct cascading e�ect dominates over the high energy range
(E > 25MeV) as il lustrated in �gure 1.

Equation (3) is then written for j = n as

B [�n] =
X
k

Z 1

E

X
�

�� ��(E
0)(f elnk;� + fenk;� + fdnk;�) �k(x;E

0) dE0 (4)

which is expanded to the form

B [�n ] =

Z 1

E

X
�

�� ��(E
0)(fe lnn;� + fenn;� + fdnn;�) �n(x;E

0) dE 0

+
X
k6=n

Z 1

E

X
�

�� ��(E
0)(fe lnk;� + fenk;� + f dnk;�) �k(x;E

0) dE 0 (5)
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De�ne the integral operators I as

I
(k)
el [�] =

Z
1

E

X
�

�� ��(E
0) fe lnk;� �(x;E 0) dE 0

I
(k)
e [�] =

Z
1

E

X
�

�� ��(E
0) fenk;� �(x;E 0) dE 0

I
(k)
d

[�] =

Z
1

E

X
�

�� ��(E
0) fdnk;� �(x;E 0) dE 0

where k = n denotes coupl ing to neutron collisions and k = p denotes the neutron source from
proton collisions. When considering only neutrons and protons, equation (5) can be written in
the linear operator form as

B [�n ] = I
(n)
el [�n ] + I

(n)
e [�n ] + I

(n)
d

[�n ] + I
(p)
e l [�p ] + I

(p)
e [�p ] + I

(p)
d

[�p ] (6)

Note that I
(p)
el [�p ] does not contribute to the neutron �eld; therefore, equation (6), with �n

replaced by �, is written as

B [�] = I
(n)
e l [�] + I

(n)
e [�] + I

(n)
d

[� ] + I
(p)
e [�p ] + I

(p)
d

[�p ] (7)

Assume a sol utionto equation (7) of the form � = �e+�d , where �e is the solution for evaporation
sources and contributes over the l ow-energy range and �d is the sol ution for the direct knockout
sources and contributes mainly over the high-energy range as suggested by �gure 1. Substitute
this assumed solution into equation (7) and �nd

B[�] = B[�e] + B [�d] = I
(n)
el [�e] + I

(n)
el [�d ] + I

(n)
e [�e ] + I

(n)
e [�d ]

+ I
(n)
d

[�e] + I
(n)
d

[�d ] + I
(p)
e [�p ] + I

(p)
d

[�p ] (8)

The terms I
(n)
e [�e ] and I

(n)
d

[�e] are near zero and are ignored because evaporation neutrons at
low energies do not produce additional evaporation neutrons, and the direct cascade e�ects have
very small cross sections over the l ow-energy range of �e and hence does not contribute any
production over the l ow- or high-energy range. Further assume that �d is calcul ated by the
HZETRN program so that �d is a sol ution of the equation

B [�d ] = I
(n)
el [�d] + I

(n)
d [�d ] + I

(p)
d [�p] (9)

This assumption simpli�es equation (8) to the form

B [�e] = I
(n)
el [�e] + I

(n)
e [�d ] + I

(p)
e [�p ] (10)

De�ne the elastic scattering terms

�s;� = �� ��(E
0) fe ljk;�(E;E 0)

with units of cm2/g-MeV, and note that for neutrons the stopping power Sj (E ) is zero and
equation (10) reduces to the integro-di�erential transport equation with source term

�
@

@x
+ �(E)

�
�e(x;E) =

X
�

Z
1

E
�s;�(E;E 0) �e(x;E

0) dE 0+ g(E;x) (11)
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Equation (11) represents the steady-state low-energy neutron 
uence �e(x;E) at depth x and
energy E: The various terms in equation (11) are energy E with units of MeV, depth in medium
is x with units of g/cm2, �e(x;E) (in particles/cm2-MeV) is the evaporation neutron 
uence,

and g(E; x) = I
(n)
e [�d] +I

(p)
e [�p ] (in particles/g-MeV) is a volume source term to be evaluated by

the HZETRN algorithm. Equation (11) is further reduced by considering the neutron energies
before and after a collision. The neutron energy En after an elastic coll ision with a nucleus of
mass number AT�

, initially at rest, is, from reference 18,

En = E

2
4A2

T�
+ 2AT�

cos �+ 1

(AT�
+ 1)2

3
5 (12)

where E is the neutron energy before the collision, ATi
is the atomic weight of the ith type of

atom being bombarded, and � is the angle of scatter. De�ne the ratio

�� =

 
AT�

� 1

AT�+1

!2

(13)

as a constant less than 1 and note that when � = 0, En = E , and when � = �, En = E��.
Therefore, change the limits of integration in equation (11) to (E; E=��) which represent the
kinetically allowed energies for the scattered neutron to result in an energy E: Equation (11)
then is written as�

@

@x
+ �(E)

�
�e(x;E) =

X
�

Z E=��

E
�s;�(E;E0) �e(x;E

0) dE0+ g(E;x) (14)

The quantity � in cm2/g is a macroscopic cross section given by

� =
X
�

���� (15)

where �� is the number of atoms per gram and �� is a microscopic cross section in cm2/atom.
Reference 19 provides approximate Maxwellian averages of cross-section values in barns which
are used herein for studies of solution techniques. These values are listed in table 1 along with
other parameters of interest for selected elements. Other units for equation (11) are obtained
from the previous units by using the scale factor representing the density of the material in units
of g/cm3.
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Table 1. Parameter Values for Selected Elements

Elastic

cross section, Density,

Element AT�
barnsa g/cm3 ��

Lithium, Li 7 1.050 0.534 0.563

Carbon, C 12 4.739 0.352 0.716

Aluminum, Al 27 1.348 2.7 0.862

Calcium, Ca 40 2.99 1.54 0.905

Iron, Fe 56 11.40 7.85 0.931

Lead, Pb 207 11.194 11.342 0.981

aMaxwellian averages (ref. 19).

Mean Value Theorem

Throughout the remaining discussions, the following mean value theorem is used for integrals.

Mean Value Theorem: For �(x;E) and f(E) continuous over an interval a � E � b such
that (1) �(x;E) does not change sign over the interval (a; b), (2) �(x;E) is integrable over the
interval (a; b), and (3) f(E) is bounded over the interval (a; b), there exists at least one point �
such that Z b

a
f(E) �(x;E) dE = f(�)

Z b

a
�(x;E) dE (a � � � b)

In particle transport, this mean value approach is not commonly used. In reactor neutron
calculations, an assumed spectral dependence for �(x;E) is used to approximate the integral over
energy groups. The present use of the mean value theorem is free of these assumptions; thus,
more 
exibil ity is allowed in the HZETRN code, and the result is a fast and e�cient algorithm
for low neutron analysis.

Multigroup Method

Consider the case where there is only one value of � which represents neutron penetration
into a single element material and let �e be denoted by �: Equation (14) is integrated from Ei
to Ei+1 with respect to the energy E to obtain

Z Ei+1

Ei

@�(x;E)

@x
dE +

Z Ei+1

Ei

�(E) �(x;E) dE = Ii + �i (16)

where

Ii =

Z Ei+1

Ei

Z E=��

E
�s;�(E;E

0) �(x;E 0) dE 0 dE (17)

and

�i =

Z Ei+1

Ei

g(E;x) dE (18)

As a test case for developing solution techniques, we use the approximate source and scattering
terms taken from subroutine FBERT of the HZETRN code (ref. 5), g = g(E; x) = KEe�E=T
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with K and T constants, and the elastic scattering term from subroutine ELSPEC of the
HZETRN code (ref. 5),

�s;�(E;E
0) =

�(E0)� e�� (E
0
�E)

1� e(1��)�E
0

with � constant, so that equation (18) is easily integrated to obtain

�i = KT
�
Ei e

�Ei=T �Ei+1 e
�Ei+1=T

�
+KT 2

�
e�Ei=T � e�Ei+1=T

�
(19)

The quantity

�i(x) =

Z Ei+1

Ei

�(x;E) dE (20)

is associated with the ith energy group, so that 1
Ei+1�Ei

�i(x) represents an average 
uence for

each energy group. Then equation (16) can be written in terms of �i(x) as follows. In the �rst
term of equation (16), interchange the order of integration and di�erentiation to obtain

Z Ei+1

Ei

@�(x;E)

@x
dE =

d�i(x)

dx
(21)

With the previously stated mean value theorem for integrals, the second term in equation (16)
can be expressed as Z Ei+1

Ei

��(x;E) dE = � �i(x) (22)

where � = �[Ei + �(Ei+1 �Ei)], for some value of � between 0 and 1.

For the term Ii in equation (17), the order of integration is interchanged. Various partitioning
schemes are illustrated in �gure 2. The integration of equation (17) depends upon the energy
partition selected. For example, �gure 2(b) illustrates an energy partition where Ei+1 < Ei=�,
and in this case, equation (17) can be written as

Ii =

Z Ei+1

E0=Ei

Z E0

E=Ei

H dE dE 0+

Z Ei=�

E0=Ei+1

Z Ei+1

E=Ei

H dE dE 0+

Z Ei+1=�

E0=Ei=�

Z Ei+1

E=�E0

H dE dE 0 (23)

where H = �s(E;E 0) �(x;E 0): Figure 2(c) depicts the case where Ei+1 = Ei=� exactly for all i.
In this special case, equation (17) reduces to

Ii =

Z Ei+1

E0=Ei

Z E0

E=Ei

H dE dE 0+

Z Ei+1=�

E0=Ei+1

Z Ei+1

E=�E0

H dEdE0 (24)

The selection of an energy partition can lead to two or more distinct groups associated with
each interchange in the order of integration (for example, see �g. 3). The integrand H can be
integrated with respect to E and the results expressed in terms of the quantities

F(b; a) =

Z b

a
� e�E dE = e�b � e�a

and

G(E 0) =
�(E 0) e��E

0

1� e�(1�� )�E
0
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and equation (24) can be written in the form

Ii =

Z Ei+1

E 0=Ei

G(E 0) F(E 0 ;Ei) �(x;E
0) dE 0

+

Z Ei+1=�

E 0=Ei+1

G(E 0) F (Ei+1 ; �E
0) �(x;E 0) dE 0 (25)

To illustrate the basic idea behind the multigroup method, use the same mean value theorem
for integrals and write equation (25) in the form

Ii =G(E�
i ) F(E

�
i ;Ei) �i+G(E�

i+1) F (Ei+1 ;�E
�
i+1) �i+1

where Ei < E �
i < Ei=� and Ei+1 < E�

i+1 < Ei+1=�. The special partitioning of the energy as
il lustrated in �gure 2(c) enables us to obtain from equation (16) a system of ordinary di�erential
equations as follows:

d

dx

2
66664

�0
�1
...

�N�2
�N�1

3
77775 =

2
66664

a11 a12
a22 a23 �0�

. . . . . .

�0� aN�1;N�1 aN�1;N
aNN

3
77775

2
66664

�0
�1
...

�N�2
�N�1

3
77775 +

2
66664

�0
�1
...

�N�2
�N�1

3
77775 (26)

where ai;i = G(E �
i ) F(E�

i ;Ei)� � and ai;i+1 = G(E�
i+1) F(Ei+1;�E

�
i+1): Further assume that

for large values of N , �i = 0 for all i � N: This assumption gives rise to the following system of
ordinary di�erential equations:

dy

dx
= Ay+ b

subject to the initial conditions y(0) = 0: Here y is the column vector of �i values,
col (�0 ;�1 ; : : : ;�N�1 ), the matrix A is anN by N upper triangular matrix, and b is the column
vector col (�0; �1; : : : ; �N�1 ). In a similar manner, the integrals in equation (23) can be evaluated
for other kinds of energy partitioning and a system of equations having the form of equation
(26) obtained. However, for these other energy partitions, the structure of the N by N square
matrix A will change. It remains upper triangular but with more o�-diagonal elements which
depend upon the type of energy partition. (See, for example, �g. 3.) For our purposes the system
of equations (eq. (26)) is used to discuss some of the problems associated with the multigroup
method.

Of prime concern is how an energy grid is to be constructed and how this energy grid controls
the size of the matrix in equation (26). Consider the construction of the energy partition

�
E0 ;

E0

�
;
E0

�2
; : : : ;

E0

�N

�

where E0 = 0:1 MeV, for the selected elements of lithium, aluminum, and lead. Table 2
il lustrates integer values ofN necessary to achieve energies greater than 30 MeV. These values
of N represent the size of the matrix associated with the number of energy groups. The value
E0 = 0:1 MeV, in terms of human exposure, represents a lower bound where lower energies are
not important. The value of 30MeV represents an upper limit for the evaporation particles.
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Table 2. Energy Partition Size N

Element � N 0.1/�N

Lithium 0.563 10 31.53

Aluminum 0.862 39 32.75

Lead 0.981 298 30.38

Observe that for energy partitions where Ei+1 < Ei=� the values of N are larger, and if
Ei+1 > Ei=� the values of N are smaller. The cases where Ei+1 > Ei=� give rise to problems
associated with the integration over the areas A1 and A2 of �gure 2(d) when the order of
integration is interchanged. In this �gure, the area A1 is associated with the integral de�ning
�i , and the area A2 is a remaining area associated with an integral that is some fraction of the
integral de�ning �i+1 which is outside the range of integration. Therefore, some approximation
must be made to de�ne this fractional part. This type of partitioning produces errors, due to any
approximations, but it has the advantage of greatly reducing the size of the N by N matrix A

at the cost of introducing errors into the system of equations. A more detailed analysis of the
energy partition can be found in reference 20.

The case of neutron penetration into a composite material gives rise to the case where � > 1
in equation (11). In this special case, equation (17) becomes

Ii =
X
j

Z Ei+1

Ei

Z E=�j

E
�sj(E;E

0) �(x;E 0) dE 0 dE

Select � = max (�1 ; �2; : : : ; �j) and construct the energy partition where Ei+1 = Ei=�. Then
obtain a system of di�erential equations having the upper triangular form:

d

dx

2
666664

�0
�1
...
...

�N�1

3
777775
=

2
666664

a11 a12 a13 � � � a1N
a22 a23 � � � a2N

a33 � � �

...

�0�
. . .

...
aNN

3
777775

2
666664

�0
�1
...
...

�N�1

3
777775
+

2
666664

�0
�1
...
...

�N�1

3
777775

(27)

Observe that for some arbitrary energy grouping we have, for the element hydrogen, a case
where the value of �j is zero. In this situation we must integrate over many energy groups as
il lustrated in �gure 3. Some type of approximations must be made when the order of integration
is interchanged, depending upon the selected energy partitioning. Also the problem of selecting
the mean values associated with each of these integrations exists.

Mean Value Determination

Consider the case of neutron 
uence in a single shield material with the energy partitioning as
il lustrated in �gure 2(c). This case is where successive energy values are given by Ei+1 = Ei=�
for all values of the index i as it ranges from 0 to N. Select a �nite value for N large enough
that the assumption �N = 0 holds true. The system of equations in equation (26) is then
a closed system and we can solve for the last term �N and then march backwards to solve
�N�1; �N�2 ; : : : :
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The nonzero elements ai;j for matrix A in equation (26) consists of the diagonal elements
and the �rst diagonal above the main diagonal. This gives the values

aii =G(E
�

i ) F(E
�

i ;Ei) � �

ai;i+1 =G(E
�

i+1) F (Ei+1;�E
�

i+1)

for i = 1; : : : ; N , where E�

i and E�i+1 are selected mean values associated with the lower and
upper triangles illustrated in �gure 2(c). These mean values vary with energy and were selected
so that the multigroup solution agrees with the numerical solution of the test problem. The
values determined empirically were

E�

i = Ei + �1(Ei+1� Ei)

E�i+1 = Ei+1 + �2(Ei+2 � Ei+1)

where

�1 =

8<
:

1 +m11(E � E11)� �1 (E > E11)


1 +m12(E � E11)� �1 (E22 < E < E11)


3 +m13(E � E22)� �1 (E < E22)

and

�2 =

8<
:

2 +m21(E � E11) (E > E11)


2 +m22(E � E11) (E22 < E < E11)


4 +m23(E � E22) (E < E22)

where

1 = 0:93


2 = 0:90


3 = 0:30


4 = 0:27

m11 = 0:0030485

m12 = 0:2490258

m13 = �0:3937186

E11 = 3:037829

m21 = 0:004355

m22 = 0:249026

m23 = �0:255920

E22 = 0:5079704

and �1 is 0:0 for lead, 0:02 for aluminum, and 0:075 for lithium. These values of � for the mean
value theorems were determined by trial and error so that the multigroup curves would have the
correct shape and agree with the numerical solution. These selections for the mean values are
not unique.

Solution Method in Shield Materials

Consider the energy partition Ei+1 = Ei=� and the resulting system of di�erential equations
(eq. (26)). The solution of this system of equations is obtained by �rst solving the last equation
of the system. This equation has the form

d�N�1

dx
= aNN�N�1 + �N�1(x) (�N�1(0) = 0)

and has the solution

�N�1(x) = eaNNx
�
�N�1(0) +

Z x

0
�N�1(s) e

�aNNs ds

�

which implies

�N�1(x0 +�x) = eaNN�x �N�1(x0)+ eaNN (x0+�x)
Z x0+�x

x0

�N�1(s) e
�aNNs ds

10



Now consider each of the remaining equations above the last equation in equation (26). A typical
equation from this stack has the form

d�i�1

dx
= aii�i�1 + fi(x) (�i�1(0) = 0) (28)

where fi(x) = �i(x)+ ai;i+1�i(x) is known, since �i(x) is calculated before �i�1(x). This typical
equation has the solution

�i�1(x) = eaiix
�
�i�1(0)+

Z x

0
fi(s) e

�aiis ds

�

which implies

�i�1(x0 + �x) = eaii�x �i�1(x0) + eaii(x0+�x)
Z x0+�x

x0

fi(s) e
�aiis ds

Observe that for the system of equations in equation (27), the solution technique is essentially
the same with the exception that the right-hand side of equation (28) is replaced by a summation

of the previously calculated terms, so that fi(x) = �i(x)+
NX

j=i+1

ai;j �j�1(x):

Numerical Solution

The solutions obtained from the system of equations (eq. (26) or (27)) depend upon the
selection of mean values associated with each energy interval. The selection of these mean
values is determined by examining the numerical solution in certain special cases. We obtain a
numerical solution of equation (11) in the special case given by

g = g(E;x) = KEe�E=T

where K (particles/cm3-MeV) and T (MeV) are constants. We construct the solution over the
spatial domain x � 0 and energy range 0:1 � E � 80 MeV. This domain is discretized by
constructing a set of grid points xi = i �x and Ej = j �E for some grid spacing de�ned by
�x and �E values being used. For i;j integers, de�ne ui;j = �(xi;Ej), then the transport
di�erential-integral equation (11) can be written in a discrete form as follows, with the starting
values u0;j = 0 and v0;j = 0 being used. For the �rst step in �x, approximate the 
ux by the
accumulation of the source over the �rst interval as

u1;j = �xKEj e
�Ej=T (29)

followed by the numerical calculation of the rescattering term

vi;j =

Z Ej=�

Ej

�(E0)� e��(E
0�Ej )

1� e�(1��)�E
0 u(xi;E

0) dE 0 (30)

for i = 1. After this �rst, and each successive step, integrals of the type vi;j givenby equation (30)
are evaluated with Simpson's one-third rule. Evaluate equation (30) for all energies j = 0; 1; : : :,
and then use a two-step algorithm in a repetitive fashion to advance the solution. For values of �
near 1, the numerical solution of equation (11) requires that �E become small. The low-energy
spectrum then becomes di�cult to calculate without special procedures, as cited in reference 17.
In this case, a two-step modi�ed Euler predictor-corrector scheme is used (refs. 21 and 22), which
is de�ned by
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Second step:

f1;j = v1;j+ Ej e
�Ej � �u1;j

u2;j =

�
u1;j + �x f1;j (j = 0)
1
2

�
u1;j�1 + u1;j+1

�
+ �x f1;j (j > 0)

9>=
>; (31a)

Third step:

f2;j = v2;j + Ej e
�Ej � �u2;j

u3;j = u1;j + 2�x f2;j

)
(31b)

The second step is an adoption of the Fredrichs method from reference 21. The third step is a
central di�erence second-order step in �x: After 100 applications of this two-step algorithm, we
apply the following stability correction as suggested in reference 22:

f3;j = v3;j + Ej e�Ej � �u3;j

u3;j =
1

2

�
u3;j + u2;j

�
+ �x f3;j

9=
; (32)

Note equations (32) are to be understood in an iterative sense and not strictly algebraic sense.

Recursive Solution

In the special case g(E;x) = g(E), a solution to equation equation (11) is assumed of the
form

�(x;E) =
1X
n=1

�n(E) fn(x) = �1(E) f1(x) + �2(E) f2(x)+ � � � (33)

Substitute this series into equation (11) and obtain a solution by requiring that � and f satisfy

�1(E) = g(E)

�n+1(E) =

Z E=�

E
fs(E;E

0) �n(E
0) dE0

f 01(x)+ � f1(x) = 1

f 0n(x)+ � fn(x) = fn�1(x)

9>>>>>>>=
>>>>>>>;

(34)

for n = 1;2; 3; : : :, where the di�erential equations are subject to the initial condition that
fn(0) = 0 for all n: Here the terms for �n(E) are de�ned recursively and take a great deal of
computational time for large values of n. The di�erential equations have the solutions given by
the recursive relations

f1(x) =
1

�

�
1� e��x

�
fn(x) =

Z x

0
fn�1(u) e

��(x�u) du

9>>=
>>; (35)

which are easily evaluated for as large a value of n as desired. We �nd numerically that jfn(x)j
decreases with increasing n for x < 1 and increases for x > 1 so that the series solution does
not converge in this case. For jxj � 1, we calculated the solution given by equation (35) for
terms through n = 5 and n = 6 and compared them with the numerical solution. The mean
values associated with the multigroup method were then adjusted so that the multigroup method
agreed with the numerical solution and recursive solution for this special test problem. We then
used these same mean values which where associated with numerical source terms as provided
by the HZETRN code.
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Comparison ofMultigroup and Other Solutions

The numerical solutions and recursive solutions of the test problem were then compared with
the multigroup solution for neutron penetration in lithium, aluminum, and lead mediums. The
results are illustrated in �gures 4, 5, and 6. Excellent agreement is obtained in these three
cases. In these �gures, the solid line represents the numerical solution. The circles represent the
recursive solution and the triangles represent the multigroup solution. The various curves were
calculated for depths x of 0.1, 0.5, 1.0, 5.0, 10.0, 50.0 and 100.0 g/cm2.

The multigroup method has huge advantage in its very short computational time needed to
calculate the solution without loss of accuracy. The multigroup method takes less than 1 min
of computational time, whereas the Monte Carlo methods require many hours of computa-
tional time.

Application for Al-H2O Shield-Target Con�guration

The previous development is now applied to an application of the multigroup method
associated with an aluminum-water shield-target con�guration. In particular, consider the case
where the source term g(E;x) in equation (11) represents evaporation neutrons produced per unit
mass per MeV and is speci�ed as a numerical array of values corresponding to various shield-
target thicknesses and energies. The numerical array of values is produced by the radiation
code HZETRN developed by Wilson et al. (ref. 23). The numerical array of values are actually
given in the form g(Ei;xj;yk) in units of particles/g-MeV, where yk represents discrete values

for various target thicknesses of water in g/cm2, xj represents discrete values for various shield

thicknesses of aluminum, also in units of g=cm2, and Ei represents discrete energy values in
units of MeV. These discrete source term values are used in the following way. Consider �rst
the solution of equation (11) by the multigroup method for an all-aluminum shield with no
target material; i.e., target thickness yk = 0: The HZETRN program was run to simulate the
solar particle event of February 23, 1956, and the source term g(Ei; xj; yk) associated with an
aluminum-water shield was generated for these conditions. With this source term, equation (11)
was solved by the multigroup method.

For a single shield material, � = 1, equation (11) becomes

�
@

@x
+ �(E)

�
�(x;E) =

Z E=�1

E
�s1 (E;E 0) �(x;E 0) dE 0 + g(E; x) (36)

where an integration of equation (36) from Ei to Ei+1 produces

Z Ei+1

Ei

@�

@x
dE +

Z Ei+1

Ei

�(E) �(x;E) dE

=

Z Ei+1

Ei

Z E=�1

E
�s1 (E;E0) �(x;E 0) dE 0 dE +

Z Ei+1

Ei

g(E;x) dE (37)

We de�ne the quantities

�i =

Z Ei+1

Ei

�(x;E) dE

bi =

Z Ei+1

Ei

g(E;x) dE

9>>>>=
>>>>;

(38)
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and interchange the order of integration of the double integral terms in equation (37). Then
apply the mean value theorem to obtain the result

d�i

dx
+ ��i =

Z Ei+1

Ei

Z E 0

E=Ei

�s1 (E;E
0) dE �(x;E 0) dE 0

+

Z Ei+2

Ei+1

Z Ei+1

E=�1E
0

�s1(E;E
0 )dE �(x;E 0) dE 0 + bi (39)

over the energy group Ei < E 0 < Ei+1 : For the energy spacing Ei+1 = Ei=�, the �rst double
integral in equation (39) represents integration over the lower triangle il lustrated in �gure 2(c).
The second double integral in equation (39) represents integration over the upper triangle
il lustrated in �gure 2(c). De�ne

g1 (E
0 ) =

Z E 0

E=Ei

�s1(E;E0 )dE

g2 (E
0 ) =

Z Ei+1

E=�1E
0

�s1 (E;E 0) dE

9>>>>>=
>>>>>;

(40)

and then employ another application of a mean value theorem for integrals to write equation (39)
in the form

d�i

dx
+ � �i = g1 [Ei + �1(Ei+1 � Ei)]�i + g2[Ei+1 + �2(Ei+2 � Ei+1)]�i+1 + bi (41)

This produces the coe�cients associated with the energy group Ei to Ei+1 , which are given by

aii = g1 � �

ai;i+1 = g2

�
(42)

In this way, the diagonal and o�-diagonal elements of the coe�cient matrix in equation (26) are
calculated.

For a compound target material, comprised of material 1 and material 2, there are two values
of �. A value �1 is selected for material 1 and a value �2 is selected for material 2 of the
compound material. In this case, equation (36) takes on the form

�
@

@x
+ �(E)

�
�(x;E) =

Z E=�1

E
�s1 (E;E

0) �(x;E 0) dE 0

+

Z E=�2

E
�s2 (E;E 0) �(x;E 0) dE 0+ g(E;x) (43)

where �s1 and �s2 are scattering terms associated with the respective materials. These terms
are calculated in the HZETRN code. Two cases are considered. The �rst case requires that
the E=�2 line be above the E=�1 l ine. (See �g. 2 (d).) The second case is where �2 = 0 (the
hydrogen case) and the limits of integration for the second integral goes to in�nity. Each case
is considered separately.

For the �rst case, assume that �1 > �2 > 0 and select the exact energy spacing dictated
by the E=�2 line. Then proceed as for the single shield material. Integrate equation (43)
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from Ei to Ei+1 and interchange the order of integration on the double integral terms. De�ne

bi =
REi+1
Ei

g(E;x) dE and obtain the equation

d�i

dx
+ ��i = I11 + I12 + I21 + I22 + bi (44)

where now the I21 and I22 integrals have, because of the exact spacings, the forms

I21 =

Z Ei+1

Ei

Z E0

E=Ei

�s2(E;E0 ) dE �(x;E0) dE0

I22 =

Z Ei+2

Ei+1

Z Ei+1

E=�2E
0

�s2 (E;E0) dE �(x;E0 ) dE0

9>>>>>=
>>>>>;

(45)

De�ning the terms

h1(i)(E
0 ) =

Z E0

E=Ei

�si(E;E
0) dE (i = 1; 2)

h2(i)(E
0 ) =

Z Ei+1

E=�2E
0

�si(E;E0 )dE (i = 1; 2)

and using the mean value theorem for integrals gives from equations (45)

I21 = h1(2)[Ei + �1(Ei+1 � Ei)]�i

and
I22 = h2(2)[Ei+1 + �2(Ei+2 � Ei+1)]�i+1

where �1 and �2 de�ne intermediate energy values associated with the mean value theorem.
The integrals I11 and I12 are associated with integration limits (E; E=�1) and energy intervals
dictated by the selection of �2 for determining the exact energy spacings. These integrals are
associated with the trapezoidal area 1 (A1) and triangular area 2 (A2) illustrated in �gure 2(d).
These areas are a fraction of the triangle areas associated with the line E0 = E=�2. These
fractions are given by

f1 =
1
2 (Ei+1 � Ei)

2
�

1
2 (Ei+1 � Ei=�1)(Ei+1 � �1Ei+1)

1
2 (Ei+1 � Ei+1�Ei

)2

f2 =
(Ei+1=�1 � Ei+1)(Ei+1 � �1Ei+1)

(Ei+1 � Ei)(Ei+2 � Ei+1)

9>>>>=
>>>>;

(46)

and we write
I11 =f1h1(1)�i

I12 =f2h2(1)�i+1

9=
; (47)

The coe�cients for the system of di�erential equations in equation (27) are then given by

a11 =h1(2) + f1h1(1) � �

a12 =h2(2) + f2h2(1)

9=
; (48)
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For the second case, of hydrogen, �2 equals 0; therefore one of the limits of integration be-
comes in�nite. Let �1 determine the energy spacing in this case. Again integrate equations (45)
over the energy interval (Ei;Ei+1), which is determined by the E0 = E=�1 line. With the def-
initions given by equations (38), integrate equation (43) over the interval (Ei;Ei+1) and then
interchange the order of integration in the resulting double integrals to obtain

d�i

dx
+ ��i = I�1 + I�2 + bi

where

I�1 =

Z Ei+1

Ei

Z E0

E=Ei

�s1(E;E
0) dE �(x;E 0) dE 0+

Z Ei+2

Ei+1

Z Ei+1

E=�1E
0

�s1(E;E 0) dE �(x;E0) dE0

and

I�2 =

Z Ei+1

Ei

Z E0

Ei

�s2 (E;E
0) dE �(x;E 0) dE 0+

NX
j=1

Z Ei+j+1

Ei+j

Z Ei+1

Ei

�s2(E;E 0) dE �(x;E0)dE0

and for all N� greater than some integer N > 0, it is known that �(x;E) will be zero. De�ne

h3(E
0) =

Z E0

Ei

�s1 (E;E
0) dE (Ei < E 0 < Ei+1)

h4(E
0) =

Z Ei+1

�1E
0

�s1(E;E0) dE (Ei+1 < E 0 < Ei+2)

h5(E
0) =

Z E0

Ei

�s2 (E;E
0) dE (Ei < E 0 < Ei+1)

h6(j) =

Z Ei+j+1

Ei+j

�s2(E;E0) dE (Ei+j < E 0

j < Ei+j+1)

and then write the coe�cients associated with the system of di�erential equations as

ai;i = h3 + h5 � �

ai ;i+1= h4 + h6(1)

ai ;i+2= h6(2)

ai ;i+3= h6(3)

...

ai ;i+n = h6(n)

In this way a system of equations is generated that has the triangular form given by the
system of equations in equation (27).

Again use the source term g(Ei; xj ; yk) obtained from the HZETRN simulation of the
solar particle event of February 23, 1956, associated with an aluminum-water shield-target
con�guration. Note that now the multigroup system of equations (eq. (27)) associated with
equation (39) must be solved for the multiple atom target material of water. Consider the
cases of discrete shield thickness x2; x3 ; : :: and apply the multigroup method to the solution of

16



equation (11) applied to all target material y > 0. For each value of xi considered, the initial
conditions are obtained from the previous solutions generated where y = 0: This represents the
application of the multigroup method to two di�erent regions: region 1 of all shield material
and region 2 of all target material. Then continue to apply the multigroup method to region 2
for each discrete value of shield thickness, where the initial conditions on the start of the second
region represents exit conditions from the shield region 1. This provides for continuity of the
solutions for the 
uence between the two regions.

Results and Discussion

The present formalism was used to evaluate the neutron 
uence for various aluminum shield
and water target combinations. Figure 7 illustrates the low-energy neutron 
uence due to the
scattering of evaporation neutrons in an aluminum shield for various thicknesses with yk = 0
(i.e., no target material). Figure 8 illustrates the total neutron 
uence for various aluminum
shield thicknesses. This 
uence consists of the HZETRN-generated neutron 
uence plus the
multigroup-generated low-energy neutron 
uence. Figures 9, 10, and 11 are graphs of the neutron

uence in depths of 1, 10, and 100 g/cm2 of aluminum generated from the HZETRN code both
with and without the addition of the multigroup evaporation neutrons.

Typical results for no shield before the water target are il lustrated in �gures 12, 13, and 14
where a comparison of the multigroup methodwith the previous HZETRN results for thicknesses
of 1, 10, and 30 g/cm2 can be made. Note that in the calculations of the multigroup method, the
source terms g(E;x), the scattering term �s(E;E0), and cross section �(E) of equation (11) are
all given as numerical output from the HZETRN code for the solar particle event of February 23,
1956. Also note that these calculations were compared with the LAHET Monte Carlo results
from reference 24. Figures 12, 13, and 14 illustrate this comparison for neutron 
uences versus
energy at water depths of 1, 10, and 30 g/cm2, respectively. Figure 15 is a graph of neutron

uence versus depth in a shield-target con�guration of 100 g/cm2 of aluminum followed by
100 g/cm2 of water. Observe the increase in the low-energy neutron 
uence at the aluminum-
water boundary. This increase is caused by high-energy neutrons colliding with hydrogen atoms,
which results in large energy losses. In these types of collisions, the neutrons of modest energies
give up one half of their energy on the average; thus, the lower energy neutron 
uence is increased.

In �gures 12, 13, and14, note the distinct improvement of the 
uence by using the multigroup
evaporation neutrons over that of the previous HZETRN results. These improved results are
still a little lower than the results predicted by the Monte Carlo simulation. These �gures
show that the multigroup method is more accurate at the higher target depths compared with
results at the lower depths. This is due to the straight-ahead approximation assumptions
used in the one-dimensional Boltzmann equation, where all secondaries produced by nuclear
collisions are assumed to move in the same direction as the primary nucleon which caused the
collision. This assumption is true for secondaries which are high-energy particles. This straight-
ahead approximation is not true for low-energy neutrons produced by evaporation because these
neutrons are generally isotropically distributed. These neutrons make up the source terms in the
multigroup method. The straight-ahead assumption causes errors at the smaller target depths
because it fails to account for all the low-energy neutrons transported back from larger depths of
the material. In an attempt to improve the performance of the multigroup method for simulating
low-energy neutrons, the assumption was made that only one half the source terms moved in
the forward direction while the other half moved in the backward direction. The solution of the
multigroup system of equations (eq. (27)) was then modi�ed. Using one half the source terms
g(Ei;xj;yk), system of equations (eq. (27)) was marched �rst through the shield material and
then through the target material. By using the end boundary condition generated, the equations
were then marched backwards through the target and then the shield material. The 
uences
from the forward and backward marching were then added to obtain a total 
uence. This process
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is referred to in the �gures as the two-dimensional multigroup method. Figures 16, 17, and 18
il lustrate the results of the two-directional multigroup method applied to the case of no shield

and a target of water only for nominal depths for an exposure to the solar particle event of
February 23, 1956. Figure 19 illustrates the 
uence in a depth of 10 g/cm2 of water when the

two-dimensional method was applied to a 100 g/cm2 aluminum shield followed by a 100 g/cm2

target of water when exposed to the solar particle event of February 23, 1956. Observe that the
two-directional multigroup method greatly improves the low-energy 
uence predictions at the

smaller depths.

Research is continuing to close the remaining gap between transport code predictions and

Monte Carlo results. Possible errors from various sources are being investigated. The nuclear
cross sections used are believed to be one source of error because only elastic cross sections
were used in the multigroup simulation. The elastic cross sections are much larger than the

nonelastic cross sections at low energies. Nonelastic cascading does occur and it is believed
that the multigroup method would be improved by incorporating both types of cross sections.

Other sources of errors reside in the HZETRN program itself. The nuclear cross sections used
by HZETRN are interpolated from a large database that was developed experimentally many
years ago; this database needs to be updated. The HZETRN code is a one-dimensional transport

code using the straight-ahead approximation. The improvement of the multigroup method in
going from the straight-ahead approximation to the two-directional multigroup approximation

suggests that similar type changes be incorporated into the HZETRN code in order to re
ect
the nonisotropic character of the events.

Concluding Remarks

These preliminary studies have shown that the multigroup method developed for the study of
low-energy neutron transport has made signi�cant improvements in and is compatible with the

current HZETRN code developed at Langley Research Center. It has proven to be a fast and
e�cient algorithm for the inclusion of low-energy neutrons into the HZETRN code. The addition

of nonelastic processes in the low-energy neutron transport is expected to further improve the
result.
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uence at depth of 10 g/cm2 in aluminum exposed to solar
particle event of February 23, 1956.
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Figure 11. Energy spectra of neutron 
uence at depth of 100 g/cm2 in aluminum exposed to

solar particle event of February 23, 1956.
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Figure 12. Energy spectra of neutron 
uence at depth of 1 g/cm2 in water exposed to solar
particle event of February 23, 1956.
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Figure 13. Energy spectra of neutron 
uence at depth of 10 g/cm2 in water exposed to solar
particle event of February 23, 1956.
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Figure 14. Energy spectra of neutron 
uence at depth of 30 g/cm2 in water exposed to solar
particle event of February 23, 1956.
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particle event of February 23, 1956, and calculated with two-directional multigroup method.
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particle event of February 23, 1956, and calculated with two-directional multigroup method.
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